Fitur Unggulan
Pada produk source code kmeans pada pengelompokan penerima bantuan berbasis web sudah terdapat juga perhitungan manual menggunakan excel. Jadi ini sanagat memudahkan bagi kamu yang sedang belajar kmeans. Selain mendapatkan source code juga akan mendapatkan perhitungan manual.
Data Mining menggunakan K-Means Clustering
Metode K-Means Clustering adalah salah satu teknik dalam data mining yang digunakan untuk mengelompokkan data ke dalam beberapa kelompok berdasarkan kesamaan atribut tertentu. Teknik ini sangat berguna untuk analisis data yang besar dan kompleks, di mana kita ingin mengidentifikasi pola atau struktur yang tersembunyi di dalamnya.
Pengertian K-Means Clustering
K-Means Clustering adalah algoritma unsupervised learning yang bertujuan untuk mengelompokkan data ke dalam k kelompok berdasarkan kemiripan antar data. Algoritma ini bekerja dengan cara menghitung pusat kelompok (centroid) dari kelompok-kelompok yang terbentuk, dan mengelompokkan setiap data ke dalam kelompok yang memiliki centroid terdekat.
Implementasi K-Means Clustering
Inisialisasi Centroid Awal
Penugasan Data ke Kelompok Terdekat
Perhitungan Ulang Centroid
Iterasi
Hasil Akhir
Contoh Penerapan K-Means Clustering
Misalnya, kita memiliki data berisi informasi tentang pelanggan sebuah toko online, seperti jumlah pembelian bulanan dan jumlah kunjungan ke situs. Kita ingin mengelompokkan pelanggan ke dalam beberapa kelompok berdasarkan perilaku belanja mereka. Implementasi untuk melakukan K-Means Clustering pada data. Setelah klasterisasi selesai, kita dapat mengetahui kelompok mana yang masing-masing pelanggan termasuk.
K-Means Clustering memiliki aplikasi yang luas dalam berbagai bidang, seperti analisis pasar untuk segmentasi pelanggan, pengelompokkan data geografis, dan pengelompokkan berita berdasarkan topik. Algoritma ini membantu dalam menemukan pola yang tersembunyi dalam data besar secara efisien dan efektif.
Published:
08 Apr, 2025 03:02 sore
Category:
Frameworks:
Item Included:
High Resolution:
YesDocumentation:
YesTags: